Criteria for allergenic building materials

*Institute of Environment and Health (IUG) and University of Applied Sciences FH Fulda, Germany
**Institute for Allergy and Asthma, Sedin 4, Krasnodar, Russia

Abstract

Allergenic building materials are increasingly problematic. This is true not only in occupational health, but can also be the reason for the increasing prevalence of indoor allergies. Particularly individuals with family heredity of increased sensitizing potential are in need of special protection and practical criteria for the assessment of allergens in building materials. This article attempts to present a point scale scoring the allergenic potential of e.g. wooden chipboard containing formaldehyde, fixed virgin wool fitted carpet and/or loamy plaster containing nickel.

Four easily understandable scores that are practical for patients as well as building experts are suggested: No or low - relevant - increased - and highly increased allergenic potential.

“Direct allergens” have to be differentiated from the “indirect allergens”. Direct allergens are defined as (pseudo-) allergenic compounds, which are emitted from building materials into the indoor air. “Indirect allergens” are defined as spores from moulds, excrements from house dust mites and animal epithelia. These allergens are induced by building defects like increased humidity and anthropogenic facilities. Structure-response-analytical knowledge and occupational hazard management serves as basic data for the assessment of indoor air allergenic potential.

Keywords: Allergens, building material, indoor air; environmental health, hazard assessment

Zusammenfassung

Kriterien allergene Baustoffe

Introduction

Allergens in building materials have been a main topic in occupational health a long time. Especially the resorption of occupational allergens via skin, as it is known e.g. with chromates in the case of bricklayers which led to minimizing the Cr-concentrations in cement, but also to increased efforts in personal occupational care like wearing protective work clothing. Currently the main focus of interest lies on the air-born indoor allergens which are chronically emitted and inhaled. It must be distinguished between Occupational Medicine/Industrial Safety = relatively high exposure, often short term, for certain clients: healthy adult workers working for eight hours - and Environmental Medicine/Environmental Protection = relatively low pollution, but frequently long-term 24 hours a day chronically incorporated indoor allergens, difficult to quantify; all subgroups of the population and riskgroups. This is especially true for 25 - 30 % atopics in the German population. Last but not least, due to the complicated processes, which the German MAK-List outlines: “Currently it is not possible to set the threshold values for the induction of an allergy (sensitization) or the initiation of an allergic reaction in sensitized subjects.” (DFG 2000) The MAK-list distinguishes between “H” (Hautreaktion = skin reaction) and “S” (Sensitizing) and particularly “Sa” (respiratory sensitizing) and “Sh” (skin sensitizing), “Sha” (both) and “SP” (photosensitizing). The “Senatskommission” at the “DFG” assesses the sensitizing responses, even in cases where the pathomechanisms are largely unknown and/or in cases of pseudo-allergic responses. Pseudo-allergic responses are not based
Schwerpunkt

on antigen-antibody recognition. This is observed in small molecules like sulfite, benzene acid, acetyl salicyl acid as well as triazine and their derivatives. Interestingly the “DFG-Senatskommission” accepts structure-response-analyses as well as human and animal tests in the allergy assessment. A distinction is made between the sensitizing potential and the sensitizing frequency of a substance. The sensitizing potential in the work place is much more important than in the “private environment”. Cases reported demonstrate that building materials like concrete are dangerous during processing. However, after the house is finished, the special hazard risk - e.g. chromate sensitizing - is diminished.

Apart from the possibility of an allergic reaction, not only the penetration of (Allergic) pollutants (through skin and mucosa) but also the form of the building materials (in this case water soluble compounds like Chromium VI) are of importance. In the long run, the aging and abrasion in private houses can lead to chronic intake of subconcentrated hazards. Consequently the frequency of sensitization may be higher in private houses than is generally assumed. A relatively high number of unknown cases also has to be considered because epidemiological investigations are difficult in this complicated field. Obviously the area of hobbies has to be inspected.

What type of risks have to be considered when houses are built privately? How well is personal working safety controlled? On the other hand, little is known currently about chronic mechanisms of sensitization when allergens in building materials come in contact with human skin immune factors and immune competent body cells. The problem becomes even more complex when allergens are absorbed at airborne carriers like house dust and penetrated through the mucosa of the inhalative or the sensory organs.

One of the most predominant cases not directly associated with the construction field which demonstrates the overlap between occupational and environmental protection is as follows: Occupational baker’s asthma or baker’s eczema show that after familiar heredity, many young bakers stop their training after noticing that they have been sensitized against the well-known allergens in the bakery work places. Every morning when they come into the bakery they suffer from attacks of hay fever, asthma and skin irritation. Not only the risk of contamination in the work place (e.g. flour dust in the bakery work place) but furthermore the predisposition (atopy) are main causes for changing professions. The number of unregistered cases is high.

In spite of the fact that it is difficult to define responses and threshold values for indoor pollutants, particularly in the field of environmental medicine, the attempt is undertaken to present a system for the allergenic potency of building materials and compounds.

This is based on the increased prevalence of allergies as mentioned at the beginning, as well as the redundantly references to indoor allergens like molds, house dust mite, and cats and pats epithelia. However, more attention should be paid to the increasing (pseudo-) allergenic potency of indoor pollutants in building materials. Therefore direct allergens (compounds incorporated directly from the building materials) will be distinguished from indirect allergens (e.g. molds after humidity).

After this, summaries of currently known relevant allergen groups will be outlined and a first attempt will be made to define threshold values for allergens in building materials. The tolerance values can not be proven allergotoxicologically, but they are recommended by the Institut für Umwelt und Gesundheit (Institute of Environment and Health - IUG) in Germany based on 20 years of indoor assessments. In the case of allergens like formaldehyde, (Diel et al. 1998a, 1998b) nickel, (Schubert et al. 1989) pyrethrum, (Bruni 1995) terpenes, (Seifert 1990) and isocyanates, (Weis 1994) the expert literature is referred to. Based on specific studies on the effects of pyrethroids on the human immune system, “no observed effect levels” (NOEL) are indicated in relation to changes of the signal transduction in human lymphocytes. (Diel 1996, Diel et al. 1998a, 1998b, 1999a, 1999b) Considering the limited research in this field further development of mechanistic models of building related allergen-material responses requires more time and the recommendations presented in this paper will have to be modified in the future. Similarly, the descriptions of the “allergy assessments of building materials” outlined in the including chapters will have to be adapted to the rapidly developing analytical methods in the allergotoxicological determination techniques. Without any claim to finality and/or totality, the authors present a point scale which allows the definition of four classes of the building material allergenic potency allergy:

1. No or little allergenic potency
2. Relevant allergenic potency
3. Increased allergenic potency
4. Highly increased allergenic potency

This score may be helpful for anyone who uses building materials. This includes construction experts such as architects, engineers or producers, tradesmen or patrons, building supervisors or officials. In the spirit of interdisciplinary environmental medicine, it is the aim that physicians and chemists, as well as toxicologists and construction experts reach an agreement that would offer standards for the better mutual understanding of the people in the construction industry. In this context it could initiate a new profession - the indoor expert. This profession must mainly grounded on the development of the construction market and consumer care.

I. Direct allergen potency

With relation to the German hazard degree (GefStoffV, Anhang I and TRGS 540) (Rühl, Kluger 1998) and the announcements of the Hazard-Commission (AGS) the following criteria of building material are outlined in respect to their allergenicity. In this context the range of the user’s atopy (= risk for sensitization) is of particular importance. The clinical definitions of “allergy” are outlined by J. Ring in his book “Angewandte Allergologie” (Ring 1988) and serve as a basis to explain the so-called familiar predisposition. Total IgE serum concentration is the main correlate to allergies of respiratory lung airways. Normal values for adults are in the range < 100 IU. In the case of allergic skin diseases IgE levels can be considered normal in a large range. But specific hyperreactivity can be observed against specific compounds (allergens). These can be measured partly with blood tests. Skin tests are, however, easier, safer, and cheaper (pricktest etc.). Furthermore it can be stated, that a major percent of the population does not
have elevated IgE-values, but is hyper-reactive to single substances. These can also be measured serodiagnostically. In representative studies of German health insurance companies the prevalence of any type of allergy is as much as 30% with increasing tendency, affecting more children than adults. In a recent publication it is suggested that currently one of every two human beings suffers from an allergy against at least one substance. (Frenkel et al. 2000)

The fact that some allergens obtain additional cancerogenic potential makes it difficult to elucidate the special risk of danger. Indoor formaldehyde is a prominent example, where at least higher concentrations can lead to nasal cancer in animal tests. The relatively small formaldehyde molecule shows high chemical reactivity but is not an antigen of itself. Only after interaction with protein side chains, can the derivated structure be recognized as an immunogen by the human immune system. Heavy colour-metals like nickel, chromium and palladium also obtain allergen potential. This depends on the oxidation level. Chromium penetrates the skin by an oxidation level VI. However, the dangerous and cancerogenic response of chromium is oxidation level III. The following Table I outlines the overlapping toxicology.

The prognoses for the allergen pollution in indoor-air or house-dust and material/product-abrasion is based on experiences during indoor assessments, which are published and discussed by the Institute for Environment and Health (IUG). (Diel F 1993, Diel E 1993, Diel F, Diel E 1996, Diel et al. 1998a, 1998b, Fischer et al. 2000, Grün 1993)

The following priority should be mentioned: (Tab. 1)

Regarding allergic reaction/response, the most important allergens are those which affect anaphylactic immediate reaction like shock, urticaria, hay fever or bronchial asthma, but also late reaction in eczema attacks etc. following the sensitization period. (Type I) (Coombs, Gell 1963) From a clinical perspective this type of allergic reactivity composes about the range 70% of all cases. Sensitivity is only possible, if the human immune system is able to recognize the allergenic molecule and after receptor interaction at the cell surface of immune competent cells a signal transduction can initiate the regulatory downstream influencing nuclear factors at the DNA-level. Two criteria are preconditional:

1. Size of the molecule (Mr > 500)
2. The specific allergenic site of the molecule (determinant)

Further immunogen factors influence the intensity of the reaction: Secondary chemical factors (e.g. azo-colours develop allergenic amines, metals develop allergenic organic metal complexes, aldehydes interact with body-proteins and develop antigens etc.); mitogenic factors (for instances, in the presence of lipo-polysaccharides or plant alkaloids where e.g. house dust can further aggravate allergies); and carriers (antigens e.g. pollen are absorbed by dust, proteins or other aerosols which then reach the irritated mucose of the bronchial/lung). The most dangerous lipophilic hazards are definitely epoxides (e.g. rest-monomers in plastics) and azo-colours, which can penetrate down to the nucleus and initiate a long-term effect on the DNA-level (e.g. cancerogens). Caseins are exclusively sensitizing (aero-) allergens in natural colourants. Once painted and dried, it can be considered that they lose their ability to be incorporated into the human body. However, dependent on the surface properties corrosion and rub-off can develop a dangerous mixture which can be inhaled. This is true for natural textile surfaces (e.g. cotton carpets) or thatched roofs (thatch, sisal, bamboo etc.).

Contact allergens (Type IV) (Coombs, Gell 1963) are habitually listed in occupational health and can be characterized as relatively small molecules. Ni in corroded alloys with the oxidation level II and formaldehyde in chipboards are included in this group. As mentioned earlier, both substances contain additional sensitizing potential, which can be explained by the high chemical reactivity during interaction with foreign or bodily proteins.

Contact allergens can initiate a delayed response which typically manifests allergic symptoms two days after contact. The causal allergen can be detected via skin test (epicutan test).

Pseudo-allergens are substances which stimulate allergic symptoms like true allergens. They are defined as anaphylactoid as opposed to anaphylactic reactions. Most of these substances are not able to sensitize the organism and therefore cannot induce the typical long-term sensitizing effect. (Diel E 1993) Anaphylactoid responses bypass the immunological reaction chain provoking the mediator cells (mast cells, basophils) directly. Furthermore, there are hazards which can mimic the mast cell mediators like histamine. These and other mediators stimulate immediate symptoms in any individual levels of intensity.

Pseudo-allergens include volatile acids, ketones, or amines; particularly basic peptides; but also formaldehyde - which belongs to all groups in Table 1. Pre-conditionally the contaminants can be incorporated and penetrate the skin. There are also contaminants which stabilize the mediator cells, such as distinct alkalines and carbon monoxide. Table 1 summarizes the substances on a priority score. As it is mentioned earlier, formaldehyde has a relatively high value as a pseudo-allergen as it belongs to all five groups.

II. Indirect allergic potency

Classical indoor allergens are include:

1. microorganisms (molds and bacteria)
2. house dust mite (-excrements)
3. animal epithelia, hair and secretions
4. other organic compounds (in the kitchen, indoor plants etc.)
The indirect allergic building materials include all materials which allow or stimulate the growth/distribution of microorganisms or other above mentioned classical indoor allergens. The outlined characteristics in buildings and homes can induce these processes:

- cold bridges
- leaks
- surface
- substrates for microorganisms
- accumulation of dust, animal epithelia
- others

People who are allergic should avoid use of building materials, which alone or after construction support the growth of germs and germ carriers (bacteria or molds). Furthermore, materials which provide nutrition for the smallest animals should also be avoided; particularly prefabricated wooden houses, which can sometimes invite rodents to gnaw at the wood and get inside the house.

III. Relevant allergen-groups

The presented catalogue does not distinguish between allergens that contact at the inhalation organs, skin, or other target organs. This differs from the GeStoffIV in Germany. Obviously, the localization of the point of incorporation can be difficult, for instance as airborne exposure - less via the gas phase than as aerosol particles - simultaneously takes place via skin/mucose more or less dependent on the inflammatory eczematous status. (Tab. 2)

It is recommended that the allergens outlined in Table 2 should be avoided or minimized in building materials. The current guidelines must be noted e.g. chromate poor cement. Bound metals in concrete or plaster cannot induce allergies even in atopics. This is similar in wood; however, in wooden dust, particularly from tropical timber, are allergens as well as cancerogens. In this case, the special risk can be found when atopic people build there own homes, use wood-material during renovation, and consumers are contaminated with wood dust. Those or other opportunities must be taken into account when assessments of the allergenity of building materials are carried out.

In the following Table 3, some building material relevant index values are summarized. These values are not quantified by means of immunotoxicological background, but they can be used for atopic and chemical-sensitive consumers according to long-term experiments on indoor assessments by the IUG:

Formaldehyde. It must always be considered that there exist products containing formaldehyde and formaldehyde releasing preservatives, but also indirect formaldehyde emitters like ethoxylated surfactants must be taken in account.

Complaints caused by the use of formaldehyde-emitting materials in e.g. school buildings are clearly demonstrated. A significant dose related sensitization rate was seen in Guinea Pig Maximization test after induction with formaldehyde. Currently an OEL (occupational exposure limit) 0.3 ppm was recommended. The authors calculate one tenth of this level- 0.03 ppm (= 0.36 mg/kg) - as a safety range in environmental health. (Tab. 3)

Nickel (Ni). Adolescents still suffer from atopic dermatitis and the risk of developing allergic contact dermatitis seems to be large. (Martz et al. 1997)

Table 2. Relevant allergen-groups

<table>
<thead>
<tr>
<th>Allergen-groups</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehyde/Dialdehyde</td>
<td>- Formaldehyde, - Glutaraldehyde</td>
</tr>
<tr>
<td>Anhydride</td>
<td>- 1, 1-Cyclohexanediacarbonsacidanhydride - Phthalateanhydride - 1,2,4,5-Benzynetetracarbonaciddianhydride - Tetraphthalateanhydride</td>
</tr>
<tr>
<td>Metals/Metal-complexes</td>
<td>- organic Hg-compounds - Colour-metals (Cr, Ni, Co complexes)</td>
</tr>
<tr>
<td>Amine/Ammonia-compounds/Amide</td>
<td>- p-Aminodiphenylamine - Ammoniapersulfate - 2-Chloracetamine - N-(2-hydroxyethyl)-3-methyl-2-chinoxalin-carboxamid-1,4-dioxid - N-isopropyl-N’-phenyl-4-phenylenediamin</td>
</tr>
<tr>
<td>Terpenes</td>
<td>- (epoxidated)</td>
</tr>
<tr>
<td>Thiazine/Thiazole</td>
<td>- 2-Chlor -10-(3-dimethyl-aminopropyl)-phenothiazine - MCI/MI (3:1) - 2-Mercaptobenzthiazol - N-cyclohexylbenzothiacylsulfenamid - Benzisothiazolinon</td>
</tr>
<tr>
<td>Thiurame</td>
<td>- Tetramethylthiuramdisulfdid - Dipentamethylthiuramdisulfdid (see also Metal-complexes of Zn)</td>
</tr>
<tr>
<td>Nitrile/Cyan/Nitro-/Para-Compounds</td>
<td>- o-Nitro-p-phenylenediamine - 1,2-Dibrom-2,4-dicyanobutan</td>
</tr>
<tr>
<td>Triazine</td>
<td>- N,N’,N”-tris (2-hydroxyethyl)-hexahydro-1,3,5-triazine</td>
</tr>
<tr>
<td>Mixtures</td>
<td>- acrylates - wood (ref. TAGS 907), - Natural latex - Pyrethrum/Pyrethroids - Terpentine oil - Polyurethane (Isocyanate) - Lanoline - Dithiocarbamates - Colourants (Azo- and antrachinon-)</td>
</tr>
</tbody>
</table>
metals like cobalt, mercury, and chromium (O'Connor et al. 1997) The influence of atopy on delayed type hypersensitivity still remains unclear, and it is suggested that both T helper lymphocyte-1 (Th1) and Th2 helper lymphocyte-2 (Th2) type cytokines are involved in the immunopathogenesis of contact allergy. But no significant differences between nonatopics and atopics could be elucidated after Ni challenge. (Szczepień et al. 1997, Goebeler et al. 1995) Threshold values were calculated in accordance of patch test experiments using 5 % Nickel chloride solution. (Tab. 3)

Pyrethroids. Improper use of pyrethroid insecticides in supermarkets, schools, kindergartens, aeroplanes, and private dwellings lead to the specific pyrethroid syndromes Type I and II. (Fischer, Eikmann 1996) These effects can be aggravated by its synergist piperonyl butoxide and other combined chemicals. (Diel et al. 1999a, 1999b, Fischer, Eikmann 1996) Long-term effects may influence the immune system and transmembrane signal-transduction affecting transcriptional nuclear factors. (Diel et al. 2000) Atopics seem to be more sensitive to pyrethroids than nonatopics. (Diel et al. 1998a, 1998b) Threshold values 3 mg/kg are estimated based on the predicted NOEL’s in the range 10 - 1000 mg/kg which effective in human blood lymphocyte tests ex vivo. (Tab. 3)

Isocyanates. The derivatives of isocyanates have been reported to be potent chemical sensitizers specific and unspecific (irritant) responses are important in allergic asthma diseases. The most important source of building materials which release isocyanates are epoxy resins. On the other hand isocyanates are not volatile. Therefore, the recommendation of indoor air threshold concentrations seems to be difficult. (Fischer et al. 2000, Weis 1994) Based on current investigations the index of 0.14 ml/m³ is recommended. (Seifert 1990)

IV. Procedure of the allergen assessment of building materials

The allergen tests of building materials are performed as follows: 1 Relevance of function and exposition 2 Availability of data and substance characteristics (safety data sheet etc.) 3 Tests of allergenicity: allergotox - IV 1 immunological ex vivo - IV 2 contact-allergological potential - IV 3 immunological in vivo - IV 4

The procedure of the indoor assessment is described in various works. (Diel F 1993) The testing institute notes the contaminations in reference to the manifold of the allergens, as well as the mitogenity or adjuvant characteristics of carrier materials (e.g. house dust). This can lead to a devaluation of the building material. Metabolites of the incorporated allergens must be included in the assessment following the roles of good laboratory practice. This may be true for split off of formaldehyde or para-phenylamines from resins or other inhaled antigens. The same is true for known combination responses if any synergist, e.g. piperonyl butoxide in pyrethroid treated wood-materials exists. As in different sectors, structure-response analytical assessments have to be performed, as well as toxicokinetic and toxicodynamic tests. Photoallergic sensitization must also be considered, as well as the specific cross-reactivity potentials of allergens. In case of doubt assessments have to be carried out in accordance to the chemical laws such as the German ChemG.

IV.1. Allergotoxic Test

Generally the allergological tests are carried out in standardized test chambers. In total, about 200 single compounds are determined From these, 50 show allergen and/or pseudo-allergen potential. The measurements are related to the following groups of contaminants: 1 Offactometrical determinations 2 VOC and SVOC (in the standardized fest chamber) 3 Glycols and other polar compounds 4 Aldehydes and ketones 5 Chemical additives Assessments in regard to the TVOC-concept under particular consideration related to allergens and pseudo-allergens 6 Heavy- and colour-metals (from the solid samples) 7 Selected biocides

The test chamber method is performed in reference to CEN/TC 264 Air Quality - Indoor Air Quality. The substances are resorbed in special resorption tubes at different air exchange rates in 100 L and 250 L-high-grade steel test chambers. After resorption, they are separated and analysed on GC-MS (gas chromatography - mass spectrometry). Depending on the sample metal materials are determined by ICP-MS (inductively coupled plasma), AAS (atomic absorption spectrometry) or polarography (if there are toxicologically relevant oxidation levels e.g. Cr). The toxicological values are reported in reference to the recommendations of the AGÖF (Arbeitsgemeinschaft Ökologischer Froschschutz) as well as ChemG (Chemikaliengesetz 1982), GefStoffV (Gefahrstoffverordnung 1986), TRGS (German technical guidelines for hazards) and the relevant reports of the LMBG (Lebensmittel- und Bedarfsgegenständegesetz) ff. respectively.

Table 3. Indices for allergens in building materials

<table>
<thead>
<tr>
<th>Allergen</th>
<th>Building substance</th>
<th>Index (for atopics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form-aldehyde</td>
<td>Acryl-, Phenyl-resin, chipboards etc.</td>
<td>30 µg/m³ (0.025 ppm) (IUG 1998)</td>
</tr>
<tr>
<td>Ni and other colour-metal</td>
<td>Alloys, drinking-water pipes</td>
<td>free or 10 mg/kg Material</td>
</tr>
<tr>
<td>Pyrethrum/Pyrethroids</td>
<td>Wood, textile carpets</td>
<td>3 mg/kg (BRUMI 1995)</td>
</tr>
<tr>
<td>Terpenes</td>
<td>Wood, fixatives</td>
<td>max. 30 µg/m³ (Seifert 1990)</td>
</tr>
<tr>
<td>Isocyanates</td>
<td>PU-foams, Polyurethane-fittings</td>
<td>0.14 µg/m³ (0.02 ppb) (Weis 1994)</td>
</tr>
</tbody>
</table>

* first recommendations
IV.2. Immunological tests *ex vivo*

Immunological tests are performed for the allergotoxicological assessments using blood cell fractions of atopics and non-atopics in incubates and primary cell cultures. These *ex vivo*-methods are published in peer reviewed international journals. (Diel et al. 1999a, 1999b) These include

1 the histamine-liberation-test **HLT** (which mimicks the anaphylactic and anaphytaclid immediate reaction)
2 the lymphocyte-viability-test (testing the lymphocyte proliferation, **“MTT-test”** after stimulation using different mitogens like PHA - phytohemagglutinin, LPS-lipopolysaccharide, Con A - concanavalin A etc.)
3 the basophil-degranulation-test (panoptical determination of the degranulated basophils from atopics and non-atopics. This is to recognize the challenge of basophils in atopics and non-atopics.)

The catalogue of allergens in the MAK-BAT-lists of the DFG (Deutsche Forschungsgemeinschaft)-Senatskommission serves as a basis for the assessments. In this case mainly inhalative (contact-) allergens are reported. (DFG 1999)

IV.3. Contact-allergen potential Tests

No **in vitro** test method exists for this. Therefore one has to use the provocation tests with human beings or animals. Normally the animals used in tests are mice and guinea pigs, which are more sensitive than human beings in some cases.

Testing the improvement of the sensitizing potential in humans is forbidden (even for volunteers) in the EU with regard to ethical limits. However in the USA many results exist from relevant studies.

The following animal-tests are usable:
1 guinea pig maximisation test (Magnusson, Kligmann 1969)
2 lymph node test on mice (Kimber et al. 1986)
3 TINA-test on guinea pigs (Ziegler 1977)

A substance has to be reported as **sensitizing after skin contact** (“Sa”) when in the presence of **Freund’s adjuvants** > 30 % respond with sensitization of the skin (allergic contact eczema) or typical changes of the lymph nodes respectively. The substance must then be indicated with an **“R”** in the workingplace. (GetStoffIV, Anhang 1 No. 1.1.2.4.10.–4)

IV.4. Immunological tests in vivo

(has to be elucidated)

V. Point-Score Allergenity

As far allergens in building materials are incorporated as aerosols after rub-off or aging a devaluation has to be performed. (see at the beginning @ carriers) The recommendations and definitions in the MAK-publications have to be considered. (DFG 1999, p 157ff) Additionally the mitogenic responses of the carriers from dust, fibre rub-off, foams and emissions must be indicated as ultrafine aerosols obtaining diffusion-equivalent radius < 100 nm.

The following point-scale is recommended for use in the assessment of the allergenity of building materials (Tab. 4)

Table 4. Point-Score allergenity of building-materials

<table>
<thead>
<tr>
<th>Allergenity</th>
<th>Basic points max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitizing (anaphylactic) + other toxicity (e.g. cancerogen)</td>
<td>5</td>
</tr>
<tr>
<td>Sensitizing + contact allergen (Type I + Type IV)</td>
<td>4</td>
</tr>
<tr>
<td>Sensitizing (Type I)</td>
<td>3</td>
</tr>
<tr>
<td>Contact allergen (Type IV)</td>
<td>2</td>
</tr>
<tr>
<td>Pseudoallergen (anaphylactoid)</td>
<td>1</td>
</tr>
<tr>
<td>Indirect allergen (chapter II)</td>
<td>1</td>
</tr>
<tr>
<td>Other Type of the allergic responses</td>
<td>1</td>
</tr>
</tbody>
</table>

From this score the maximum number has to be selected and multiplied with the following factors dependent on exposure risk:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalative and/or aerosol</td>
<td>2</td>
</tr>
<tr>
<td>Combination response (Synergist)</td>
<td>1.5</td>
</tr>
<tr>
<td>Aerosols after aging and/or rub-off</td>
<td>1.5</td>
</tr>
<tr>
<td>Additional main allergens</td>
<td>1.5</td>
</tr>
<tr>
<td>(Other the allergic symptoms supporting influences*)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*optional, if more than one of the mentioned influences exist but do not lead to be valued by the factor 1.5

In this scheme, a maximum score of 5 x 2 x 1.5 x 1.5 x 1.5 = 33.75, rounded up to 34, can be calculated (It must be rounded up or down)

Example 1:
Formaldehyde containing chipboard
→ “high allergenity”

Example 2:
Colour-metal containing loam paste
→ “no allergenity”

Example 3:
Insecticide treated cotton carpet
→ “relevant allergenity”

1. Example: HCHO. A formaldehyde-containing (> 0.3 ppm) chipboard with terpene (e.g. d,l-limonene) paint suffering from slight abrasion can reach the following point score: (Diel F 1993)

5 (sensitizing and chemical change of body proteins + suggestion of cancerogen activity) x 2 (inhaled) x 1.5 (aerosols after aging of the chipboard - less intensive) x 1.5 (terpenes are violent allergens) x 1.5

Chipboard: 34 (total count)

2. Example: Ni. A loam paste at the outer wall of a building contains > 500 mg/kg Ni as well as Cr and Co. (Schubert 1985)

2 (contact-allergen) x 1.5 (other non-responsive contact-allergens)

Loam paste: 3 (total count)

3. Example: Pyrethrum. A cotton carpet is treated with pyrethrum/PBO and fixed with SVOC emitting fixative. (Fischer et al. 2000)

1. Without lanoline (wool-fat allergen)

2 (weak contact-allergen) x 2 (inhaled as aerosol in house dust) x 1.5 (combination response with PBO) (Witte et al. 2000)

Cotton carpet without lanoline: 6 (total count)

3. With lanoline

6 (from 3.1) x 1.5 (additional allergen)

Cotton carpet with lanoline: 9 (total count)

In Table 5 the point scale is recommended:

Table 5. Value scale for the allergenity of building materials

<table>
<thead>
<tr>
<th>Points</th>
<th>score/value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 4</td>
<td>no or weak allergenity</td>
</tr>
<tr>
<td>5 – 10</td>
<td>relevant allergenity</td>
</tr>
<tr>
<td>11 – 20</td>
<td>increased allergenity</td>
</tr>
<tr>
<td>> 20</td>
<td>high allergenity</td>
</tr>
</tbody>
</table>

Results for the calculated examples from this assessment:

Example 1:
Formaldehyde containing chipboard
→ “high allergenity”
A basis point score is provided in Table 5 in relation to the priority in Table 1. This can be explained following the generally accepted allergotaxonomic considerations. For the assessment of the allergy risk, which can be suffered after the use of building materials containing allergens similar to other harmful contaminants, the type and structure of the molecule is important for the choice of the basic point score. On the other hand, the individual incorporation and sensitivity of target organs is of importance.

(Factor)

This can be different than other pollutants, which do not respond as much depending on the individual sensitivity, as other allergens do. The family heredity, the fact of atopy - yes or no - can definitely influence the allergotaxonomic assessment scores. In extreme cases, the one and only contamination of an allergen can be relevant in one family, but irrelevant in another. Increased Ni-contaminations can cause elevated chronic allergies naturally vary depending on age, geo-social and ethnical conditions. The decision whether building materials can be used or how much the allergic potential can be minimized has to be considered on the basis of environmental medical prognoses and the individual family heredity.

Acknowledgement: This work is supported by a grant from the Stiftung VERUM (München).

Table 1.

References:

BIFAU: Textillallergie. Berliner Institut für Analytik und Umweltforschung e.V., Umwelteth 15 (Berlin 1999)

BRUMI. Pyrethroid - Pestizide in Innenräumen. Bremer Umweltinstitut e. V. (Bremen 1995)

Diel et al.: In vitro effects of the pyrethroid S-Bioallethrin on lymphocytes and basophils from atopic and non-atopic subjects. Allergy 53 (1998b) 1023-59

Eriksson: Monoterpenes from pine wood may affect respiratory function. Food Chem Tox 35 (1997) 737-743

Fischer et al.: Textile Bodenbeläge. C.F.Müller (Heidelberg 2000)

Freger, Grunberger: Solubility of cobalt in cement. Contact Dermatitis 4 (1978) 14-18

König, Koldmeyer: Vorstufen einer verbesserten arbeitsmedizinischen Allergiediagnostik. Wissenschaftsverlag NW (Bremerhaven 1989)

Maubach, Menne: Nickel and the skin. Immunology and Toxicology. CRC Press Inc. (Boca Raton 1989)

Ring: Angewandte Allergologie. MMV Medizin Vig (München 1988)

Seifert: Regulation indoor air. In Walkinshaw (Hrsg.): Indoor Air 90, Proceedings of the 5th International Conference on Indoor Air Quality and Climate 5 (Toronto 1990) 35-49

